Electro-acupuncture promotes differentiation of mesenchymal stem cells, regeneration of nerve fibers and partial functional recovery after spinal cord injury.

نویسندگان

  • Qing Yan
  • Jing-wen Ruan
  • Ying Ding
  • Wen-jie Li
  • Yan Li
  • Yuan-shan Zeng
چکیده

In order to improve the structure and function of acute spinal cord injury, the present study investigated the effect of electro-acupuncture (EA) on the differentiation of mesenchymal stem cells (MSCs) and the regeneration of nerve fibers in transected spinal cord of rats. The differentiation of MSCs into neuron-like cells and neuroglial cells and regeneraton of 5-hydroxytrptamine (HT) nerve fibers in the injured site of spinal cord were assessed after treatment with EA, MSCs transplantation, and EA plus MSCs transplantation. Compared with the control and MSCs groups, the content of endogenous neurotrophin-3 (NT-3) in the injured site and nearby tissues was increased in EA and EA+MSCs group. The differentiation of MSCs into neuronal-like cells and oligodendrocyte-like cells and number of 5-HT positive nerve fibers in the injured site were enhanced in the EA+MSCs group. Basso, Beattie, Bresnahan score of the paralyzed hindlimbs was highest in the EA+MSCs group. The present study demonstrates that electro-acupuncture can promote the differentiation of MSCs and regeneration of nerve fibers in injured spinal cord through induction of endogenous NT-3, and that combination of EA and MSCs transplantation can improve partial function of paralyzed hindlimbs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Local Transplantation of Autologous Bone Marrow Mesenchymal Stem Cells in Combination with Low Level Laser Therapy in Repair of Experimental Acute Spinal Cord Injury in Rats

Objective- The aim of this study was to demonstrate the efficacy MSCs transplantation in combination with low level laser irradiation (low level laser irradiation) in repair of experimental acute spinal cord injury. Design- Experimental study. Animals- 28 adult male Wistar Rats. Procedures- A ballon- compression technique was used to produce an injury at the T8-T9 level of spi...

متن کامل

Mesenchymal Stem Cells as an Alternative for Schwann Cells in Rat Spinal Cord Injury

Background: Spinal cord has a limited capacity to repair therefore, medical interventions are necessary for treatment of injuries. Transplantation of Schwann cells has shown a great promising result for spinal cord injury (SCI). However, harvesting Schwann cell has been limited due to donor morbidity and limited expansion capacity. Furthermore, accessible sources such as bone marrow stem cells ...

متن کامل

Repair of Spinal Cord Injury by Co-Transplantation of embryonic Stem Cell-Derived Motor Neuron and Olfactory Ensheathing Cell

Background: The failure of regeneration after spinal cord injury (SCI) has been attributed to axonal demyelination and neuronal death. Cellular replacement and white matter regeneration are both necessary for SCI repair. In this study, we evaluated the co-transplantation of olfactory ensheathing cells (OEC) and embryonic stem (ES) cell-derived motor neurons (ESMN) on contused SCI. Methods: OEC...

متن کامل

O27: The Role of Hydrogels and Cell Based Therapies in Regeneration of Spinal Cord Injury

Spinal cord injury (SCI) is one of the devastating conditions leading to functional and neurological deficits following road traffic accidents. To date, there is no definite treatment for repairing damaged spinal cord tissue. In this regard, cell therapy opens a new window in front of scientists by using different cells such as mesenchymal stem cells, olfactory ensheathing cells, Schwann cells,...

متن کامل

Building the Regenerative Microenvironment with Functional Biomaterials for Spinal Cord Injury Repair

Spinal cord injury (SCI) is a devastating injury resulting in changes in the spinal cord’s motor, sensory, or autonomic functions. Following SCI, an inhibitory environment develops at the injury site for neural regeneration. In this review, we summary the strategies to rebuild the regenerative microenvironment with functional biomaterials for SCI repair mainly based on our research. We have dev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Experimental and toxicologic pathology : official journal of the Gesellschaft fur Toxikologische Pathologie

دوره 63 1-2  شماره 

صفحات  -

تاریخ انتشار 2011